
A NEW MIDDLE PATH APPROACH FOR ALIGNMENTS IN BLAST

DEEPAK GARG
Thapar Institute of Engineering & Technology, Patiala, India

dgarg@tiet.ac.in,deep108@yahoo.com

SURESH C SAXENA

Thapar Institute of Engineering & Technology, Patiala, India

LALIT M BHARDWAJ
Central Scientific Instruments Organization, Chandigarh, India

Abstract

This paper deals with a new middle path approach developed for reducing alignment calculations
in BLAST algorithm. This is a new step which is introduced in BLAST algorithm in between the
ungapped and gapped alignments. This step of middle path approach between the ungapped and
gapped alignments reduces the number of sequences going for gapped alignment. This results in
the improvement in speed for alignment up to 30 percent.

Keywords: Gapped Alignment, BLAST, Middle Path, DNA sequences, HSPs

1. Introduction

In the plethora of tools available for data mining in bioinformatics, Basic Local
Alignment Search Tool (BLAST) is being extensively used due to its unmatched speed
and sensitivity. Though the performance of BLAST is the best in its class of tools but
still there is a lot of scope of improvement in it. In order to work upon BLAST, its
variants are understood and a lot of parameters, on which the speed and sensitivity of
BLAST depends, are analyzed. The amount of research, which has gone so far into the
BLAST, is tremendous. Many people have put in years of efforts to formulate the core
of BLAST. In this work, an attempt has been made to improve its performance by
taking into consideration its parameters and working of BLAST. There are various
parameters that have contextual relations with areas other then the algorithm design
and theory of computer science. However, in the present work, the analysis of these
parameters has been limited from the viewpoint of a computer engineer. Due to
increased traffic, BLAST is becoming slower and slower day by day. Also the number
and size of sequences are increasing. Therefore, there is a need to continuously
improve BLAST algorithm to keep its speed with the requirements of biologists. Even
after a number of improvements in hardware and in parallel and distributed algorithms,
BLAST is predicted to run to half of its speed every year. If this trend continue, then
after 3-4 years it may not be possible to work with BLAST.
BLAST is a set of similarity search programs designed to explore all available DNA
and protein sequence databases. BLAST programs have been designed for speed, with
a minimal sacrifice of sensitivity to distant sequence relationships. BLAST uses the
concept of a "segment pair" which is a pair of sub-sequences of the same length that
form an ungapped alignment. The algorithm first looks for short words that are present
in both the sequences and then extend these at either ends to find the longest segments
present in both. The statistical significance of these High-scoring Segment Pairs is
evaluated to determine whether the matches are random or not. Thus, the scores
assigned in a BLAST search have a well-defined statistical interpretation, making real
matches easier to distinguish from random background.

 2

However, as how the sequences are classified and their functionality is found have
changed with time. The molecular biologists are changing their approach with the advent
of new techniques and technologies. When a threshold is crossed while finding similarity
between two sequences, then sequences are said to be homologous. The Homology
values have utility of finding biological properties, chemical properties and other
characteristics of the sequence for which these were unknown previously. Normally
everyone is using Smith-Waterman algorithm to find out local alignments. Till now it is
considered as a good model to show similarities between two regions of two sequences
with allowed number of mutations or differences or mismatches. [1-3]
The algorithms that were used to find out similarities have improved on time. First
algorithm that became popular was FASTA [4]. Then BLAST [5] was the major entry in
this area and till now it is very popular amongst scientists. There are many improvements
that appeared in BLAST from time to time. The improvement can be in the number of
hits and can be implemented in a multi hit algorithm that can actually take the value of N
that should be used for the N-hit algorithm [6]. Also there can be a drop off percentage
score instead of drop off score so that for calculating the drop off there is no need to go
into the scoring matrix [7].

2. BLAST

In Lipman[8] algorithm, two sequences called as target and query sequence are
compared. For this, it requires a matrix of size m X n; if the size of the sequences is m
and n respectively. So as per algorithmic techniques, it will have n2 complexity. This
algorithm looks for overlapping regions of similarity of length W that is known as high
scoring regions. The choice of value for W has a direct affect on the number of hits being
produced. The value of W is a tradeoff in the speed and sensitivity. Small W gives more
results. Every hit has its starting and finishing index in sequences being compared. Then
the algorithm performs an ungapped extension if two hits are on same diagonal and the
difference between starting indices is less then a constant A. For doing ungapped
extension and to know that whether it results in a high Scoring pair alignment dynamic
programming technique is implemented using a two dimensional matrix in which query
sequence is on one side of the matrix and the target sequence is on the other side of the
matrix [9].

Once the high scoring area is found out for ungapped region, then there is a need
to go for gapped alignment to know whether better results can be found in the form of
bigger area alignments. Here, a seed value is taken that has to be from the ungapped
region. Then it tries to extend the matches towards both regions of the seed value. Here
the drop-off parameter is used. The extension continues until the score does not falls
below the drop off parameter and satisfies the eligibility criterion for the sequences to be
displayed in result. The selection of the value of drop-off parameter is again the tradeoff
between speed and sensitivity.
The highest score for any alignment is calculated. The score [a+1,b+1] is dependent upon
the three cells [a,b], [a+1,b] and [a,b+1]. Similarly score [a+2,b+2] is dependent on
[a+1,b+1], [a+2, b+1] and [a+1, b+2] . This can be extended similarly for an m X n
matrix depending on the size of the target and query sequence. So ‘a’ lies from 1 to m
and ‘b’ from 1 to n.
After this, depending upon the E-Value, nominal Score S2 and maximum number of
sequences to be displayed by the user, the results are displayed. E- Value is a statistical

 3

parameter to find out the probability of finding the same score or higher score if the same
query was searched against a random database [8-10].

E = Q/2s'
Where s'= (λs-ln K) / (ln 2) and Q = mXn
m= total length of query sequence
n = total length of target sequence
λ and K are constants and also depends on the scoring matrix e.g. BLOSUM or
PAM

3. Middle Path Approach

The meaning of middle path approach is that instead of performing ungapped alignments
as well as gapped alignments on all the sequences, only relevant sequences may pass
through these two phases of algorithm. It is not necessary that all those sequences which
are going for ungapped analysis may require gapped analysis. A middle path should be
taken between ungapped and gapped alignments. The reason is that there is no need to
perform gapped alignment on all the sequences on which ungapped analysis is
performed. As per suggested approach, only some of the sequences should be sent for
gapped alignment. If the algorithm of BLAST is studied in detail, it is found out that out
of the total time one third is taken to find out word hits, one third is taken to find out
ungapped alignment and one third is taken for gapped alignment. If ungapped analysis is
performed for 100 alignments, then approximately one alignment crosses the eligibility
mark to be displayed as a result of the sequence alignment.[13,14] So if a check can be
made on a number of alignments that go from ungapped alignments to gapped
alignments; and gapped alignment is performed only on these reduced number of
sequences then time is reduced for gapped alignment and results in significant time
saving. The time is reduced by that proportion by which there is reduction in ungapped
alignments passing for gapped alignment. So a parameter is to be introduced as a check
for making the sequences eligible for gapped alignment. For this, the understanding of
how gap costs are calculated in BLAST is crucial.
3.1 Calculating affine gap costs

In this, the observation is that the insertion cost is high as compared to other costs like
initiating a gap, extending a gap, because insertion cost is the sum of initiating a gap and
insertion into that gap.
The recursive algorithm that uses dynamic programming and calculates the values for
every cell is as follows

1. Best (a,b)=tempBest(a-1,b-1)+score[a,b]
Where score[a,b] is the original value in the 2-D matrix taken from dynamic
programming matrix prepared using scoring matrices like PAM, BLOSUM or others and
tempBest(a,b) is the best alignment score up to a certain point on the matrix diagonal.
Insertionq (a-1, b) means inserting at [a,b] with respect to target sequence and
Insertiont(a,b-1) means Inserting at [a,b] with respect to query sequence.

 If (Insertionq (a-1, b) > Insertiont(a,b-1))
 {
 if (Insertionq (a-1,b) > best(a,b)

 4

Insertionq (a-1, b) = Insertionq (a-1, b) – gap_extension;
 Else

{
Insertionq (a-1, b) = Best (a,b) – Insertion_Cost;

 tempBest = Insertionq (a-1,b) ;
 }
Else If (Insertiont(a,b-1) > Best(a,b)) then

{
Insertiont(a,b-1) = Insertiont(a,b-1) – gap_extension;
tempBest = Insertiont(a,b-1);

}
Else

Insertiont(a,b-1) = Best(a,b) – Insertion_Cost;
Else

tempBest(a,b) = Best(a,b);
}

The above algorithm makes only three comparisons as compared to five in the original
BLAST algorithm and four in the algorithm suggested by Zhang, Pearson and Miller[16].
This helps in reduction in time. Array access can be done once for a particular value by
assigning the value to a variable. That further helps in time reduction. The above
algorithm makes only three arithmetic operations as compared to five in the original
BLAST algorithm and four in the algorithm suggested by Zhang, Pearson and Miller.
Going further, there is a need to know when any insertion is to be made. For this, a
strategy has to be got evolved as which one of the sequences has to go in for gapped
alignment category. The parameter for deciding insertions and deletions is to be
dependent on the ratio of the gapped and ungapped alignments. It has been observed that
when the number of sequences travel from ungapped to gapped alignment, the resulting
alignments are reduced to 1 to 2 %. So taking a clue from it, a lot of testing was done and
thereafter it was observed that the insertions can be made at every N character where N
can vary from 2 to 100. Here the value of N will make a balance between gapped and
ungapped alignments. It was observed that higher the value of N, lower are the number of
insertions and lesser are the calculations resulting in less speed. So the value of N will
again make a tradeoff between speed and sensitivity. Unusual high value of N may result
in loss of sensitivity.

Table 1. Indexes of the two dimensional matrix used to calculate the best score for gapped alignment

 Query sequence

[a,b] [a+1,b] [a+2,b] . . .

[a,b+1) [a+1, b+1] [a+2, b+1] . . .

[a, b+2] [a+1,b+2] [a+2,b+2] . . .

Target

sequence

.

The basis for above is that generally gaps are seen in the sequences in the regions that are
less conserved [13]. It was also observed that it is not important whether the gap is at the

 5

start or at the end or somewhere else. Sometimes the gaps in the sequences are very
longer and force the change of diagonal in the matrix. In some cases, the ungapped
regions can be shifted if the gaps are unusually longer.
So depending upon whether both insertions Insertionq (a,b) and Insertiont(a,b) are
allowed or Insertionq (a,b) is allowed or only Insertiont(a,b) is allowed or no insertion is
allowed at that point, this will make an interesting change in proposed recursive
algorithm as per the following

Case 1:
// Recursion step follows (No comparisons)
Best (a,b)=tempBest(a-1,b-1)+score[a,b]
Case 2:
// Recursion step follows (1 comparison)
Best (a,b)=tempBest(a-1,b-1)+score[a,b]
If Insertiont(a,b-1) > Best(a,b) then

{
Insertiont(a,b-1) = Insertiont(a,b-1) – gap_extension;

 tempBest = Insertiont(a,b-1);
 }

Else
{
Insertiont(a,b-1) = Best(a,b) – Insertion_Cost;

 tempBest(a,b) = Best(a,b);
}

Case 3:
// Recursion step follows (1 comparison)
Best (a,b)=tempBest(a-1,b-1)+score[a,b]

 if (Insertionq (a-1,b) > best(a,b)
{
Insertionq (a-1, b) = Insertionq (a-1, b) – gap_extension;
tempBest = Insertionq (a-1,b) ;
}

Else
{
Insertionq (a-1, b) = Best (a,b) – Insertion_Cost;

 tempBest(a,b) = Best(a,b)
}

Case 4:
 // recursion step follows (3 comparisons)
Best (a,b)=tempBest(a-1,b-1)+score[a,b]

If (Insertionq (a-1, b) > Insertiont(a,b-1))
 {
if (Insertionq (a-1,b) > best(a,b)

Insertionq (a-1,b)= Insertionq (a-1,b) – gap_extension;
Else

{
Insertionq (a-1,b) = Best(a,b) – Insertion_Cost;)
tempBest = Insertionq (a-1,b) ;
}

 6

Else If Insertiont(a,b-1) > Best(a,b) then
{
Insertiont(a,b-1) = Insertiont(a,b-1) – gap_extension;
tempBest = Insertiont(a,b-1);
}

Else
Insertiont(a,b-1) = Best(a,b) – Insertion_Cost;
}

 Else
tempBest(a,b) = Best(a,b);
}

Target Sequence

 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1

Q
ue

ry
 S

eq
ue

nc
e

2
Fig.1. Dynamic programming matrix highlighting insertions in the target and query sequence that will be
required for the middle path approach for 20X20 matrix

If the matrix size is aXb, then case 4 runs approximately (aXb)/N2 times. For example, in
the given matrix of 20X20, N =10, the case 1 runs 20X20/(10)2 i.e. 4 times. So the case
that is most computing intensive out of the four runs least number of times. Case 1 runs
approximately (N-1)2*((aXb)/N2). For example, given in the matrix of 20X20, N=10, it
runs for 81*4= 324 times. So the case with least amount of computation runs most of
times. This effect is in same proportion for arithmetic instructions also. The combined
effect makes significant improvement in the speed.

 7

0.18
0.185

0.19
0.195

0.2
0.205

0.21
0.215

10 20 30 40 50 60 70 80 90 100

Matrix Size

A
ve

ra
ge

 c
om

pa
ris

on
s

pe
r c

el
l

0
0.5

1
1.5

2
2.5

3
3.5

10 20 30 40 50 60 70 80 90 100

matrix size

A
ve

ra
ge

 c
om

pa
ris

on
s

pe
r c

el
l

 Fig.2a. Number of average comparisons required per cell if the matrix size is increased from 10 to
100 with same value of N, Data shows values for N=10.
 Fig.2b. Comparison with average number of comparisons per cell in existing algorithm

1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.4

10 20 30 40 50 60 70 80 90 100
Matrix size

A
vr

 a
rit

hm
et

ic
 o

ps
 p

er
 c

el
l

 8

0

1

2

3

4
5

6

10 20 30 40 50 60 70 80 90 100
Matrix Size

A
vr

 a
rit

hm
et

ic
 o

ps
 p

er
 c

el
l

Fig.3a. Number of average arithmetic operations required per cell if the matrix size is increased
from 10 to 100 with same value of N, Data shows values for N=10.
Fig.3b. Comparison with average number of arithmetic operations per cell in existing algorithm

0
2
4
6
8

10
12
14

10 20 30 40 50 60 70 80 90 100
Matrix size

To
ta

l u
ni

ts
 o

f o
ps

 o
ps

 p
er

ce

ll

Fig.4. Comparison with the total operations plus overhead per cell in existing algorithm with same
value of N, Data shows values for N=10

 9

0
0.5

1
1.5

2
2.5

3
3.5

1 2 5 10 20 50 100
N

av
er

ag
e

co
m

pa
ris

on
s

pe
r

ce
ll

0

1

2

3

4

5

1 2 5 10 20 50 100
N

av
er

ag
e

ar
ith

m
et

ic
 o

ps
 p

er

ce
ll

Fig.5a. Number of average comparisons required per cell if Value of N is increased from 1 to 100 with matrix
size 100.
Fig.5b Number of average arithmetic operations required per cell if Value of N is increased from 1 to 100 with
matrix size 100.

Now going ahead, check parameter is defined that makes the sequence to go through the
gapped alignment after the middle path approach. As the name suggests, it is advised to
be the middle path of cutoff for ungapped extension score and BLAST cutoff parameter
for displaying a sequence.

 10

0

2

4

6

8

10

1 2 5 10 20 50 100
N

To
ta

l O
pe

ra
tio

ns
s

pe
r c

el
l

Fig.6. Number of Total operations required per cell if the Value of N is increased from 1 to 100 with matrix size
100

This parameter is called as cutoffmp .
 So As per BLAST parameters S1 and S2

cutoffmp = (S1+S2)/2.
So if the score from the middle path approach is between cutoffmp and S2, then gapped
alignment is performed as in BLAST; and if it is between S1 and cutoffmp then there is no
need to perform the gapped alignment and directly go to the step for displaying the
sequence. If it crosses S2, then also it can be skipped and not to go for the gapped
alignment and can display the sequence. So the time saved is proportional to the number
of sequences that will not go for gapped alignment. As per the calculations of middle path
approach are concerned; they are not more then the 30 percent of the calculations made
for gapped alignment of same sequences. This is shown in terms of reduction in the
number of comparisons. In the similar way, there is reduction in the arithmetic
calculations depending on different cases of the algorithm.

4. Discussion

The results are based on the work carried on HP x1433AP Model with 2 GB RAM and
2.8 GHz processor. The environment was Linux red hat 8.0. The existing NCBI Blast
parameters, constants, default values and flags for comparisons except for the addition of
middle path algorithm were used. These were compared with our program having the
middle path approach. Previously for Similar experiments Brenner [14] and Park [15]
have preferred to use Structural classification of proteins. Sequences were chosen
randomly and searched against the entire database. The product was tested for various
values of N.

 11

88
88.5

89
89.5

90
90.5

91
91.5

10 30 50 70 90

% of
BLAST
Time

Fig.7. Comparison of the performance of new approach with the actual BLAST time with increasing value of N

As N is increased, the number of gapped alignments decreases that has direct impact on
the execution time of BLAST. The total time by the gapped alignment is one third of the
total time and lower bound for the number of alignments that will skip the gapped
alignment test is 50% and time taken for additional calculations for remaining 50%.

Table2a. Tables show results of improvement in the algorithm and give percentage improvement when matrix
size is increased and when value of N is unchanged.

matrix
size

Average
Comparis
ons per
cell for
middle
path
approach

Average
Comparis
ons per
cell in the
original
algorithm

Average
arithmetic
operations
per cell
for middle
path
approach

Average
arithmetic
operations
Per cell in
the
original
algorithm

Total
operations
per cell
for middle
path
approach

Total
operations
per cell in
the
original
algorithm

%
improvem
ent

10 0.21 5 1.39 5 2.6 11 76.37

20 0.2 5 1.37 5 2.57 11 76.64

30 0.197 5 1.363 5 2.56 11 76.73

40 0.195 5 1.36 5 2.555 11 76.78

50 0.194 5 1.358 5 2.552 11 76.8

60 0.193 5 1.355 5 2.548 11 76.84

70 0.1928 5 1.353 5 2.5458 11 76.86

80 0.1925 5 1.35 5 2.5425 11 76.89

90 0.1922 5 1.349 5 2.5412 11 76.90

100 0.192 5 1.349 5 2.54 11 76.91

1000 0.1901 5 1.3479 5 2.5380 11 76.93

10000 0.1897 5 1.3470 5 2.5367 11 76.94

100000 0.18903 5 1.34612 5 2.53515 11 76.96

 12

Table2b. Tables show results of improvement in the algorithm and give percentage improvement when N is
increased and matrix size remains unchanged.

Value of
N

Average
Comparis
ons per
cell

Average
Comparis
ons per
cell

Average
arithmetic
operations
per cell

Average
arithmetic
operations
Per cell

Total
operations
per cell

Total
operations
per cell

%
improvem
ent

1 3 5 4 5 8 11 27.28

2 1.24 5 2.79 5 5.03 11 54.28

5 0.356 5 1.632 5 2.988 11 72.84

10 0.192 5 1.354 5 2.546 11 76.86

20 0.0985 5 1.189 5 2.2875 11 79.21

50 0.04 5 1.08 5 2.12 11 80.73

100 0.02 5 1.04 5 2.06 11 81.28

The experiments show that the ideal value for N is in between 9 to 11. The time
improvement in such cases is approximately 75%. Out of these based on our cutoffmp at
least half of the sequences will not go for gapped alignment (This is the lower bound and
in some cases up to 81% of the sequences will not go for gapped alignment). By skipping
half of sequences, savings are 37.5% of the time for gapped alignment. This includes the
time taken to calculate the middle path approach to exclude the sequences for gapped
alignment. The gapped alignment takes 33% of the total BLAST time so the total saving
will be approximately 12% (37.5% of 33%). It is also noted that as the size of the
sequences is increasing the method given here will be more useful as shown in the table
with the calculations for sequences with matrix size 1000, 10000 and 100000. So as the
matrix size id increasing there is no degradation of time component and there is no
compromise on the sensitivity of the resulting sequences.

5. Conclusion

By introducing this middle path algorithm as part of BLAST and then instead of
performing gapped alignment on all the sequences, a check called cutoffmp is performed,
then only a very limited number of sequences will go for gapped alignment. This will
result in performing less number of gapped alignments resulting in better speed and
improving the overall performance of the BLAST algorithm. The scientific community
using BLAST will be greatly benefited in their research and development in terms of
saving the time in processing the genomic sequences.

6. Acknowledgements

This work was supported by All India Council of Technical Education (AICTE), Ministry
of Human Resources and Development, Govt. of India, New Delhi by funding the project
for “Efficient algorithm design for pattern discovery in bioinformatics sequences” which

 13

is currently being executed at Thapar Institute of Engineering and technology, Patiala,
India.

7. References

1. W.R. Pearson, W. Miller. 1992. Dynamic Programming Algorithms for biological

sequence comparison, Methods in Enzymology Vol. 210. pp. 575-601.
2. D. Gusfield. 1997. Algorithms on Strings, Trees and sequences. Cambridge

University press pp. 297-311
3. S. Altschul, M. Boguski, W. Gish and J. Wotton. 1994. Issues in searching

molecular Sequences Databases Nature Genetics. Vol 6, pp. 119-129
4. W.R. Pearson, D.J. Lipman, 1988. Improved Tools for Biological Sequence

Comparison, Proc. Nat’l Academy of Sciences, vol. 85, No. 8, pp. 2444-2448
5. S.F.Altschul, W.Gish, W.Miller, E.W. Myers, D.J. Lipman 1990. Basic Local

Alignment Search Tool Journal of Molecular Biology. Vol. 215, no. 3, pp. 403-410.
6. D. Garg, S.C. Saxena, L.M. Bhardwaj. 2004. Improvement of 2-hit algorithm for

Basic Local Alignment Search tool Proceedings of Biotechnical approaches for
sustainable development Mar 19-21, Allied Publishers pp. 45-56.

7. D. Garg, S.C. Saxena, L.M. Bhardwaj. 2005. Using Drop off percentage in place of
Drop-off score for BLAST, Bioinformatics Computing, Allied Publishers, pp. 99-
106

8. W.J. Wilbur, D.J. Lipman. 1983. Rapid similarity searches of nucleic acid and
protein data banks Proceedings of national academy of sciences vol. 80 no. 3 pp.
726-730.

9. Ian Korf, Mark Yandell, Joseph Bedell, 2003. BLAST. O’Reilley Publishers, first
edition pp. 55-70

10. S.F. Altschul et. Al. 1997. Gapped BLAST and PSI – BLAST: A new generation of
Protein database search programs. Nucleic acids research... Vol 25 no 17 pp 3389-
3402, 1997.

11. S. Henikoff, J. Henikoff 1992. Amino acid substitution matrices from protein
blocks. Proceedings of National Academy of sciences, vol 89, no. 22. pp. 10915-
10919.

12. M.O. Dayhoff, R.M. Schwartz and B.C. Orcutt 1978 A model of evolutionary
changes in proteins. Atlas of protein sequence and structure vol. 5, pp. 345-358.

13. B. Ma, M. Li, D. Kisman, J.Tromp. 2002. Patternhunter II: Highly sensitive and fast
homology search. Journal of bioinformatics and computational biology. vol 2, no. 3,
pp. 417-439, 2004.

14. S.F. Altschul, 1998 “Generalized affine Gap costs for protein sequence Alignment”,
Proteins: Structure, Function and genetics, vol 32no. 1 pp. 88-96.

15. S.E. Brenner, C. Chothia, T.J.P. Hubbard 1998. Assessing sequence comparison
Methods with reliable structurally identified distant evolutionary relationships.
Proceedings of National Academy of sciences, USA. Vol 95, no. 11, pp. 6073-6078.

16. Z. Zhang, Pearson and Miller 1997. Aligning a DNA sequence with a protein
sequence Proceedings of Annual conference on research in computational molecular
biology vol 4 no. 3, pp. 339-349.

 14

17. J. Park et. Al. 1998. Sequence comparisons using multiple sequences detect three
times as many Remote homologues as pair wise methods. Journal of Molecular
biology. Vol 284 no. 4 pp. 1201-1210

18. Stephen S. Altschul, Ralf Bundschuh, Rolf Olsen 2001 The estimation of statistical
parameters for local alignment score distributions Nucleic acids research, 2001
V0l. 29 No. 2

19. D. Garg, S.C. Saxena, L.M. Bhardwaj 2004 Future research directions in Pattern
Discovery in Bioinformatics” , Bioinformatics Computing Allied Publishers pp.
317-129

